$str[$pos - 1]) : array(); // UTF char length array // This array is used to determine the length of a UTF character. // Be $c the result of ($str[$pos] & "\xF0") --where $str is the string we're operating on and $pos // the position of the cursor--, if $utf_len_mask[$c] does not exist, the byte is an ASCII char. // Otherwise, if $utf_len_mask[$c] is greater than 0, we have a the leading byte of a multibyte character // whose length is $utf_len_mask[$c] and if it is equal to 0, the byte is a trailing byte. $utf_len_mask = array( // Leading bytes masks "\xC0" => 2, "\xD0" => 2, "\xE0" => 3, "\xF0" => 4, // Trailing bytes masks "\x80" => 0, "\x90" => 0, "\xA0" => 0, "\xB0" => 0 ); $extra_check = array( "\xED" => 1, "\xEF" => 1, "\xC0" => 1, "\xC1" => 1, "\xE0" => 1, "\xF0" => 1, "\xF4" => 1, "\xF5" => 1, "\xF6" => 1, "\xF7" => 1, "\xF8" => 1, "\xF9" => 1, "\xFA" => 1, "\xFB" => 1, "\xFC" => 1, "\xFD" => 1, "\xFE" => 1, "\xFF" => 1 ); $utf_validation_mask = array( 2 => "\xE0\xC0", 3 => "\xF0\xC0\xC0", 4 => "\xF8\xC0\xC0\xC0" ); $utf_validation_check = array( 2 => "\xC0\x80", 3 => "\xE0\x80\x80", 4 => "\xF0\x80\x80\x80" ); // Main loop do { // STEP 0: Capture the current char and buffer it $c = $str[$pos]; $c_mask = $c & "\xF0"; if (isset($utf_len_mask[$c_mask])) { // Byte at $pos is either a leading byte or a missplaced trailing byte if ($utf_len = $utf_len_mask[$c_mask]) { // Capture the char $buffer[++$i & 7] = $utf_char = substr($str, $pos, $utf_len); // Let's find out if a thorough check is needed if (isset($qc[$utf_char])) { // If the UTF char is in the qc array then it may not be in normal form. We do nothing here, the actual processing is below this "if" block } else if (isset($utf_combining_class[$utf_char])) { if ($utf_combining_class[$utf_char] < $last_cc) { // A combining character that is NOT canonically ordered } else { // A combining character that IS canonically ordered, skip to the next char $last_cc = $utf_combining_class[$utf_char]; $pos += $utf_len; continue; } } else { // At this point, $utf_char holds a UTF char that we know is not a NF[K]C_QC and is not a combining character. // It can be a singleton, a canonical composite, a replacement char or an even an ill-formed bunch of bytes. Let's find out $last_cc = 0; // Check that we have the correct number of trailing bytes if (($utf_char & $utf_validation_mask[$utf_len]) != $utf_validation_check[$utf_len]) { // Current char isn't well-formed or legal: either one or several trailing bytes are missing, or the Unicode char // has been encoded in a five- or six- byte sequence if ($utf_char[0] >= "\xF8") { if ($utf_char[0] < "\xFC") { $trailing_bytes = 4; } else if ($utf_char[0] > "\xFD") { $trailing_bytes = 0; } else { $trailing_bytes = 5; } } else { $trailing_bytes = $utf_len - 1; } $tmp .= substr($str, $tmp_pos, $pos - $tmp_pos) . UTF8_REPLACEMENT; $pos += strspn($str, UTF8_TRAILING_BYTES, ++$pos, $trailing_bytes); $tmp_pos = $pos; continue; } if (isset($extra_check[$c])) { switch ($c) { // Note: 0xED is quite common in Korean case "\xED": if ($utf_char >= "\xED\xA0\x80") { // Surrogates (U+D800..U+DFFF) are not allowed in UTF-8 (UTF sequence 0xEDA080..0xEDBFBF) $tmp .= substr($str, $tmp_pos, $pos - $tmp_pos) . UTF8_REPLACEMENT; $pos += $utf_len; $tmp_pos = $pos; continue 2; } break; // Note: 0xEF is quite common in Japanese case "\xEF": if ($utf_char == "\xEF\xBF\xBE" || $utf_char == "\xEF\xBF\xBF") { // U+FFFE and U+FFFF are explicitly disallowed (UTF sequence 0xEFBFBE..0xEFBFBF) $tmp .= substr($str, $tmp_pos, $pos - $tmp_pos) . UTF8_REPLACEMENT; $pos += $utf_len; $tmp_pos = $pos; continue 2; } break; case "\xC0": case "\xC1": if ($utf_char <= "\xC1\xBF") { // Overlong sequence: Unicode char U+0000..U+007F encoded as a double-byte UTF char $tmp .= substr($str, $tmp_pos, $pos - $tmp_pos) . UTF8_REPLACEMENT; $pos += $utf_len; $tmp_pos = $pos; continue 2; } break; case "\xE0": if ($utf_char <= "\xE0\x9F\xBF") { // Unicode char U+0000..U+07FF encoded in 3 bytes $tmp .= substr($str, $tmp_pos, $pos - $tmp_pos) . UTF8_REPLACEMENT; $pos += $utf_len; $tmp_pos = $pos; continue 2; } break; case "\xF0": if ($utf_char <= "\xF0\x8F\xBF\xBF") { // Unicode char U+0000..U+FFFF encoded in 4 bytes $tmp .= substr($str, $tmp_pos, $pos - $tmp_pos) . UTF8_REPLACEMENT; $pos += $utf_len; $tmp_pos = $pos; continue 2; } break; default: // Five- and six- byte sequences do not need being checked for here anymore if ($utf_char > UTF8_MAX) { // Out of the Unicode range if ($utf_char[0] < "\xF8") { $trailing_bytes = 3; } else if ($utf_char[0] < "\xFC") { $trailing_bytes = 4; } else if ($utf_char[0] > "\xFD") { $trailing_bytes = 0; } else { $trailing_bytes = 5; } $tmp .= substr($str, $tmp_pos, $pos - $tmp_pos) . UTF8_REPLACEMENT; $pos += strspn($str, UTF8_TRAILING_BYTES, ++$pos, $trailing_bytes); $tmp_pos = $pos; continue 2; } break; } } // The char is a valid starter, move the cursor and go on $pos += $utf_len; continue; } } else { // A trailing byte came out of nowhere, we will advance the cursor and treat the this byte and all following trailing bytes as if // each of them was a Unicode replacement char $spn = strspn($str, UTF8_TRAILING_BYTES, $pos); $tmp .= substr($str, $tmp_pos, $pos - $tmp_pos) . str_repeat(UTF8_REPLACEMENT, $spn); $pos += $spn; $tmp_pos = $pos; continue; } // STEP 1: Decompose current char // We have found a character that is either: // - in the NFC_QC/NFKC_QC list // - a non-starter char that is not canonically ordered // // We are going to capture the shortest UTF sequence that satisfies these two conditions: // // 1 - If the sequence does not start at the begginning of the string, it must begin with a starter, // and that starter must not have the NF[K]C_QC property equal to "MAYBE" // // 2 - If the sequence does not end at the end of the string, it must end with a non-starter and be // immediately followed by a starter that is not on the QC list // $utf_seq = array(); $last_cc = 0; $lpos = $pos; $pos += $utf_len; if (isset($decomp_map[$utf_char])) { $_pos = 0; $_len = strlen($decomp_map[$utf_char]); do { $_utf_len =& $utf_len_mask[$decomp_map[$utf_char][$_pos] & "\xF0"]; if (isset($_utf_len)) { $utf_seq[] = substr($decomp_map[$utf_char], $_pos, $_utf_len); $_pos += $_utf_len; } else { $utf_seq[] = $decomp_map[$utf_char][$_pos]; ++$_pos; } } while ($_pos < $_len); } else { // The char is not decomposable $utf_seq = array($utf_char); } // STEP 2: Capture the starter // Check out the combining class of the first character of the UTF sequence $k = 0; if (isset($utf_combining_class[$utf_seq[0]]) || $qc[$utf_char] == UNICODE_QC_MAYBE) { // Not a starter, inspect previous characters // The last 8 characters are kept in a buffer so that we don't have to capture them everytime. // This is enough for all real-life strings but even if it wasn't, we can capture characters in backward mode, // although it is slower than this method. // // In the following loop, $j starts at the previous buffered character ($i - 1, because current character is // at offset $i) and process them in backward mode until we find a starter. // // $k is the index on each UTF character inside of our UTF sequence. At this time, $utf_seq contains one or more // characters numbered 0 to n. $k starts at 0 and for each char we prepend we pre-decrement it and for numbering $starter_found = 0; $j_min = max(1, $i - 7); for ($j = $i - 1; $j >= $j_min && $lpos > $tmp_pos; --$j) { $utf_char = $buffer[$j & 7]; $lpos -= strlen($utf_char); if (isset($decomp_map[$utf_char])) { // The char is a composite, decompose for storage $decomp_seq = array(); $_pos = 0; $_len = strlen($decomp_map[$utf_char]); do { $c = $decomp_map[$utf_char][$_pos]; $_utf_len =& $utf_len_mask[$c & "\xF0"]; if (isset($_utf_len)) { $decomp_seq[] = substr($decomp_map[$utf_char], $_pos, $_utf_len); $_pos += $_utf_len; } else { $decomp_seq[] = $c; ++$_pos; } } while ($_pos < $_len); // Prepend the UTF sequence with our decomposed sequence if (isset($decomp_seq[1])) { // The char expanded into several chars $decomp_cnt = sizeof($decomp_seq); foreach ($decomp_seq as $decomp_i => $decomp_char) { $utf_seq[$k + $decomp_i - $decomp_cnt] = $decomp_char; } $k -= $decomp_cnt; } else { // Decomposed to a single char, easier to prepend $utf_seq[--$k] = $decomp_seq[0]; } } else { $utf_seq[--$k] = $utf_char; } if (!isset($utf_combining_class[$utf_seq[$k]])) { // We have found our starter $starter_found = 1; break; } } if (!$starter_found && $lpos > $tmp_pos) { // The starter was not found in the buffer, let's rewind some more do { // $utf_len_mask contains the masks of both leading bytes and trailing bytes. If $utf_en > 0 then it's a leading byte, otherwise it's a trailing byte. $c = $str[--$lpos]; $c_mask = $c & "\xF0"; if (isset($utf_len_mask[$c_mask])) { // UTF byte if ($utf_len = $utf_len_mask[$c_mask]) { // UTF *leading* byte $utf_char = substr($str, $lpos, $utf_len); if (isset($decomp_map[$utf_char])) { // Decompose the character $decomp_seq = array(); $_pos = 0; $_len = strlen($decomp_map[$utf_char]); do { $c = $decomp_map[$utf_char][$_pos]; $_utf_len =& $utf_len_mask[$c & "\xF0"]; if (isset($_utf_len)) { $decomp_seq[] = substr($decomp_map[$utf_char], $_pos, $_utf_len); $_pos += $_utf_len; } else { $decomp_seq[] = $c; ++$_pos; } } while ($_pos < $_len); // Prepend the UTF sequence with our decomposed sequence if (isset($decomp_seq[1])) { // The char expanded into several chars $decomp_cnt = sizeof($decomp_seq); foreach ($decomp_seq as $decomp_i => $utf_char) { $utf_seq[$k + $decomp_i - $decomp_cnt] = $utf_char; } $k -= $decomp_cnt; } else { // Decomposed to a single char, easier to prepend $utf_seq[--$k] = $decomp_seq[0]; } } else { $utf_seq[--$k] = $utf_char; } } } else { // ASCII char $utf_seq[--$k] = $c; } } while ($lpos > $tmp_pos); } } // STEP 3: Capture following combining modifiers while ($pos < $len) { $c_mask = $str[$pos] & "\xF0"; if (isset($utf_len_mask[$c_mask])) { if ($utf_len = $utf_len_mask[$c_mask]) { $utf_char = substr($str, $pos, $utf_len); } else { // A trailing byte came out of nowhere // Trailing bytes are replaced with Unicode replacement chars, we will just ignore it for now, break out of the loop // as if it was a starter (replacement chars ARE starters) and let the next loop replace it break; } if (isset($utf_combining_class[$utf_char]) || isset($qc[$utf_char])) { // Combining character, add it to the sequence and move the cursor if (isset($decomp_map[$utf_char])) { // Decompose the character $_pos = 0; $_len = strlen($decomp_map[$utf_char]); do { $c = $decomp_map[$utf_char][$_pos]; $_utf_len =& $utf_len_mask[$c & "\xF0"]; if (isset($_utf_len)) { $utf_seq[] = substr($decomp_map[$utf_char], $_pos, $_utf_len); $_pos += $_utf_len; } else { $utf_seq[] = $c; ++$_pos; } } while ($_pos < $_len); } else { $utf_seq[] = $utf_char; } $pos += $utf_len; } else { // Combining class 0 and no QC, break out of the loop // Note: we do not know if that character is valid. If it's not, the next iteration will replace it break; } } else { // ASCII chars are starters break; } } // STEP 4: Sort and combine // Here we sort... $k_max = $k + sizeof($utf_seq); if (!$k && $k_max == 1) { // There is only one char in the UTF sequence, add it then jump to the next iteration of main loop // Note: the two commented lines below can be enabled under PHP5 for a very small performance gain in most cases // if (substr_compare($str, $utf_seq[0], $lpos, $pos - $lpos)) // { $tmp .= substr($str, $tmp_pos, $lpos - $tmp_pos) . $utf_seq[0]; $tmp_pos = $pos; // } continue; } // ...there we combine if (isset($utf_combining_class[$utf_seq[$k]])) { $starter = $nf_seq = ''; } else { $starter = $utf_seq[$k++]; $nf_seq = ''; } $utf_sort = array(); // We add an empty char at the end of the UTF char sequence. It will act as a starter and trigger the sort/combine routine // at the end of the string without altering it $utf_seq[] = ''; do { $utf_char = $utf_seq[$k++]; if (isset($utf_combining_class[$utf_char])) { $utf_sort[$utf_combining_class[$utf_char]][] = $utf_char; } else { if (empty($utf_sort)) { // No combining characters... check for a composite of the two starters if (isset($utf_canonical_comp[$starter . $utf_char])) { // Good ol' composite character $starter = $utf_canonical_comp[$starter . $utf_char]; } else if (isset($utf_jamo_type[$utf_char])) { // Current char is a composable jamo if (isset($utf_jamo_type[$starter]) && $utf_jamo_type[$starter] == UNICODE_JAMO_L && $utf_jamo_type[$utf_char] == UNICODE_JAMO_V) { // We have a L jamo followed by a V jamo, we are going to prefetch the next char to see if it's a T jamo if (isset($utf_jamo_type[$utf_seq[$k]]) && $utf_jamo_type[$utf_seq[$k]] == UNICODE_JAMO_T) { // L+V+T jamos, combine to a LVT Hangul syllable ($k is incremented) $cp = $utf_jamo_index[$starter] + $utf_jamo_index[$utf_char] + $utf_jamo_index[$utf_seq[$k]]; ++$k; } else { // L+V jamos, combine to a LV Hangul syllable $cp = $utf_jamo_index[$starter] + $utf_jamo_index[$utf_char]; } $starter = chr(0xE0 | ($cp >> 12)) . chr(0x80 | (($cp >> 6) & 0x3F)) . chr(0x80 | ($cp & 0x3F)); } else { // Non-composable jamo, just add it to the sequence $nf_seq .= $starter; $starter = $utf_char; } } else { // No composite, just add the first starter to the sequence then continue with the other one $nf_seq .= $starter; $starter = $utf_char; } } else { ksort($utf_sort); // For each class of combining characters foreach ($utf_sort as $cc => $utf_chars) { $j = 0; do { // Look for a composite if (isset($utf_canonical_comp[$starter . $utf_chars[$j]])) { // Found a composite, replace the starter $starter = $utf_canonical_comp[$starter . $utf_chars[$j]]; unset($utf_sort[$cc][$j]); } else { // No composite, all following characters in that class are blocked break; } } while (isset($utf_sort[$cc][++$j])); } // Add the starter to the normalized sequence, followed by non-starters in canonical order $nf_seq .= $starter; foreach ($utf_sort as $utf_chars) { if (!empty($utf_chars)) { $nf_seq .= implode('', $utf_chars); } } // Reset the array and go on $utf_sort = array(); $starter = $utf_char; } } } while ($k <= $k_max); $tmp .= substr($str, $tmp_pos, $lpos - $tmp_pos) . $nf_seq; $tmp_pos = $pos; } else { // Only a ASCII char can make the program get here // // First we skip the current byte with ++$pos, then we quickly skip following ASCII chars with strspn(). // // The first two "if"'s here can be removed, with the consequences of being faster on latin text (lots of ASCII) and slower on // multi-byte text (where the only ASCII chars are spaces and punctuation) if (++$pos != $len) { if ($str[$pos] < "\x80") { $pos += strspn($str, UTF8_ASCII_RANGE, ++$pos); $buffer[++$i & 7] = $str[$pos - 1]; } else { $buffer[++$i & 7] = $c; } } } } while ($pos < $len); // Now is time to return the string if ($tmp_pos) { // If the $tmp_pos cursor is not at the beggining of the string then at least one character was not in normal form. Replace $str with the fixed version if ($tmp_pos == $len) { // The $tmp_pos cursor is at the end of $str, therefore $tmp holds the whole $str return $tmp; } else { // The rightmost chunk of $str has not been appended to $tmp yet return $tmp . substr($str, $tmp_pos); } } // The string was already in normal form return $str; } /** * Decompose a UTF string * * @param string $str UTF string * @param integer $pos Position of the first UTF char (in bytes) * @param integer $len Length of the string (in bytes) * @param array &$decomp_map Decomposition mapping, passed by reference but never modified * @return string The string, decomposed and sorted canonically * * @access private */ function decompose($str, $pos, $len, &$decomp_map) { global $utf_combining_class; // Load some commonly-used tables if (!isset($utf_combining_class)) { global $phpbb_root_path, $phpEx; include($phpbb_root_path . 'includes/utf/data/utf_normalizer_common.' . $phpEx); } // UTF char length array $utf_len_mask = array( // Leading bytes masks "\xC0" => 2, "\xD0" => 2, "\xE0" => 3, "\xF0" => 4, // Trailing bytes masks "\x80" => 0, "\x90" => 0, "\xA0" => 0, "\xB0" => 0 ); // Some extra checks are triggered on the first byte of a UTF sequence $extra_check = array( "\xED" => 1, "\xEF" => 1, "\xC0" => 1, "\xC1" => 1, "\xE0" => 1, "\xF0" => 1, "\xF4" => 1, "\xF5" => 1, "\xF6" => 1, "\xF7" => 1, "\xF8" => 1, "\xF9" => 1, "\xFA" => 1, "\xFB" => 1, "\xFC" => 1, "\xFD" => 1, "\xFE" => 1, "\xFF" => 1 ); // These masks are used to check if a UTF sequence is well formed. Here are the only 3 lengths we acknowledge: // - 2-byte: 110? ???? 10?? ???? // - 3-byte: 1110 ???? 10?? ???? 10?? ???? // - 4-byte: 1111 0??? 10?? ???? 10?? ???? 10?? ???? // Note that 5- and 6- byte sequences are automatically discarded $utf_validation_mask = array( 2 => "\xE0\xC0", 3 => "\xF0\xC0\xC0", 4 => "\xF8\xC0\xC0\xC0" ); $utf_validation_check = array( 2 => "\xC0\x80", 3 => "\xE0\x80\x80", 4 => "\xF0\x80\x80\x80" ); $tmp = ''; $starter_pos = $pos; $tmp_pos = $last_cc = $sort = $dump = 0; $utf_sort = array(); // Main loop do { // STEP 0: Capture the current char $cur_mask = $str[$pos] & "\xF0"; if (isset($utf_len_mask[$cur_mask])) { if ($utf_len = $utf_len_mask[$cur_mask]) { // Multibyte char $utf_char = substr($str, $pos, $utf_len); $pos += $utf_len; } else { // A trailing byte came out of nowhere, we will treat it and all following trailing bytes as if each of them was a Unicode // replacement char and we will advance the cursor $spn = strspn($str, UTF8_TRAILING_BYTES, $pos); if ($dump) { $tmp .= substr($str, $tmp_pos, $starter_pos - $tmp_pos); // Dump combiners if (!empty($utf_sort)) { if ($sort) { ksort($utf_sort); } foreach ($utf_sort as $utf_chars) { $tmp .= implode('', $utf_chars); } } $tmp .= str_repeat(UTF8_REPLACEMENT, $spn); $dump = $sort = 0; } else { $tmp .= substr($str, $tmp_pos, $pos - $tmp_pos) . str_repeat(UTF8_REPLACEMENT, $spn); } $pos += $spn; $tmp_pos = $starter_pos = $pos; $utf_sort = array(); $last_cc = 0; continue; } // STEP 1: Decide what to do with current char // Now, in that order: // - check if that character is decomposable // - check if that character is a non-starter // - check if that character requires extra checks to be performed if (isset($decomp_map[$utf_char])) { // Decompose the char $_pos = 0; $_len = strlen($decomp_map[$utf_char]); do { $c = $decomp_map[$utf_char][$_pos]; $_utf_len =& $utf_len_mask[$c & "\xF0"]; if (isset($_utf_len)) { $_utf_char = substr($decomp_map[$utf_char], $_pos, $_utf_len); $_pos += $_utf_len; if (isset($utf_combining_class[$_utf_char])) { // The character decomposed to a non-starter, buffer it for sorting $utf_sort[$utf_combining_class[$_utf_char]][] = $_utf_char; if ($utf_combining_class[$_utf_char] < $last_cc) { // Not canonically ordered, will require sorting $sort = $dump = 1; } else { $dump = 1; $last_cc = $utf_combining_class[$_utf_char]; } } else { // This character decomposition contains a starter, dump the buffer and continue if ($dump) { $tmp .= substr($str, $tmp_pos, $starter_pos - $tmp_pos); // Dump combiners if (!empty($utf_sort)) { if ($sort) { ksort($utf_sort); } foreach ($utf_sort as $utf_chars) { $tmp .= implode('', $utf_chars); } } $tmp .= $_utf_char; $dump = $sort = 0; } else { $tmp .= substr($str, $tmp_pos, $starter_pos - $tmp_pos) . $_utf_char; } $tmp_pos = $starter_pos = $pos; $utf_sort = array(); $last_cc = 0; } } else { // This character decomposition contains an ASCII char, which is a starter. Dump the buffer and continue ++$_pos; if ($dump) { $tmp .= substr($str, $tmp_pos, $starter_pos - $tmp_pos); // Dump combiners if (!empty($utf_sort)) { if ($sort) { ksort($utf_sort); } foreach ($utf_sort as $utf_chars) { $tmp .= implode('', $utf_chars); } } $tmp .= $c; $dump = $sort = 0; } else { $tmp .= substr($str, $tmp_pos, $pos - $utf_len - $tmp_pos) . $c; } $tmp_pos = $starter_pos = $pos; $utf_sort = array(); $last_cc = 0; } } while ($_pos < $_len); } else if (isset($utf_combining_class[$utf_char])) { // Combining character if ($utf_combining_class[$utf_char] < $last_cc) { // Not in canonical order $sort = $dump = 1; } else { $last_cc = $utf_combining_class[$utf_char]; } $utf_sort[$utf_combining_class[$utf_char]][] = $utf_char; } else { // Non-decomposable starter, check out if it's a Hangul syllable if ($utf_char < UTF8_HANGUL_FIRST || $utf_char > UTF8_HANGUL_LAST) { // Nope, regular UTF char, check that we have the correct number of trailing bytes if (($utf_char & $utf_validation_mask[$utf_len]) != $utf_validation_check[$utf_len]) { // Current char isn't well-formed or legal: either one or several trailing bytes are missing, or the Unicode char // has been encoded in a five- or six- byte sequence. // Move the cursor back to its original position then advance it to the position it should really be at $pos -= $utf_len; $tmp .= substr($str, $tmp_pos, $starter_pos - $tmp_pos); if (!empty($utf_sort)) { ksort($utf_sort); foreach ($utf_sort as $utf_chars) { $tmp .= implode('', $utf_chars); } $utf_sort = array(); } // Add a replacement char then another replacement char for every trailing byte. // // @todo I'm not entirely sure that's how we're supposed to mark invalidated byte sequences, check this $spn = strspn($str, UTF8_TRAILING_BYTES, ++$pos); $tmp .= str_repeat(UTF8_REPLACEMENT, $spn + 1); $dump = $sort = 0; $pos += $spn; $tmp_pos = $pos; continue; } if (isset($extra_check[$utf_char[0]])) { switch ($utf_char[0]) { // Note: 0xED is quite common in Korean case "\xED": if ($utf_char >= "\xED\xA0\x80") { // Surrogates (U+D800..U+DFFF) are not allowed in UTF-8 (UTF sequence 0xEDA080..0xEDBFBF) $tmp .= substr($str, $tmp_pos, $starter_pos - $tmp_pos); if (!empty($utf_sort)) { ksort($utf_sort); foreach ($utf_sort as $utf_chars) { $tmp .= implode('', $utf_chars); } $utf_sort = array(); } $tmp .= UTF8_REPLACEMENT; $dump = $sort = 0; $tmp_pos = $starter_pos = $pos; continue 2; } break; // Note: 0xEF is quite common in Japanese case "\xEF": if ($utf_char == "\xEF\xBF\xBE" || $utf_char == "\xEF\xBF\xBF") { // U+FFFE and U+FFFF are explicitly disallowed (UTF sequence 0xEFBFBE..0xEFBFBF) $tmp .= substr($str, $tmp_pos, $starter_pos - $tmp_pos); if (!empty($utf_sort)) { ksort($utf_sort); foreach ($utf_sort as $utf_chars) { $tmp .= implode('', $utf_chars); } $utf_sort = array(); } $tmp .= UTF8_REPLACEMENT; $dump = $sort = 0; $tmp_pos = $starter_pos = $pos; continue 2; } break; case "\xC0": case "\xC1": if ($utf_char <= "\xC1\xBF") { // Overlong sequence: Unicode char U+0000..U+007F encoded as a double-byte UTF char $tmp .= substr($str, $tmp_pos, $starter_pos - $tmp_pos); if (!empty($utf_sort)) { ksort($utf_sort); foreach ($utf_sort as $utf_chars) { $tmp .= implode('', $utf_chars); } $utf_sort = array(); } $tmp .= UTF8_REPLACEMENT; $dump = $sort = 0; $tmp_pos = $starter_pos = $pos; continue 2; } break; case "\xE0": if ($utf_char <= "\xE0\x9F\xBF") { // Unicode char U+0000..U+07FF encoded in 3 bytes $tmp .= substr($str, $tmp_pos, $starter_pos - $tmp_pos); if (!empty($utf_sort)) { ksort($utf_sort); foreach ($utf_sort as $utf_chars) { $tmp .= implode('', $utf_chars); } $utf_sort = array(); } $tmp .= UTF8_REPLACEMENT; $dump = $sort = 0; $tmp_pos = $starter_pos = $pos; continue 2; } break; case "\xF0": if ($utf_char <= "\xF0\x8F\xBF\xBF") { // Unicode char U+0000..U+FFFF encoded in 4 bytes $tmp .= substr($str, $tmp_pos, $starter_pos - $tmp_pos); if (!empty($utf_sort)) { ksort($utf_sort); foreach ($utf_sort as $utf_chars) { $tmp .= implode('', $utf_chars); } $utf_sort = array(); } $tmp .= UTF8_REPLACEMENT; $dump = $sort = 0; $tmp_pos = $starter_pos = $pos; continue 2; } break; default: if ($utf_char > UTF8_MAX) { // Out of the Unicode range $tmp .= substr($str, $tmp_pos, $starter_pos - $tmp_pos); if (!empty($utf_sort)) { ksort($utf_sort); foreach ($utf_sort as $utf_chars) { $tmp .= implode('', $utf_chars); } $utf_sort = array(); } $tmp .= UTF8_REPLACEMENT; $dump = $sort = 0; $tmp_pos = $starter_pos = $pos; continue 2; } break; } } } else { // Hangul syllable $idx = (((ord($utf_char[0]) & 0x0F) << 12) | ((ord($utf_char[1]) & 0x3F) << 6) | (ord($utf_char[2]) & 0x3F)) - UNICODE_HANGUL_SBASE; // LIndex can only range from 0 to 18, therefore it cannot influence the first two bytes of the L Jamo, which allows us to hardcode them (based on LBase). // // The same goes for VIndex, but for TIndex there's a catch: the value of the third byte could exceed 0xBF and we would have to increment the second byte if ($t_index = $idx % UNICODE_HANGUL_TCOUNT) { if ($t_index < 25) { $utf_char = "\xE1\x84\x00\xE1\x85\x00\xE1\x86\x00"; $utf_char[8] = chr(0xA7 + $t_index); } else { $utf_char = "\xE1\x84\x00\xE1\x85\x00\xE1\x87\x00"; $utf_char[8] = chr(0x67 + $t_index); } } else { $utf_char = "\xE1\x84\x00\xE1\x85\x00"; } $utf_char[2] = chr(0x80 + (int) ($idx / UNICODE_HANGUL_NCOUNT)); $utf_char[5] = chr(0xA1 + (int) (($idx % UNICODE_HANGUL_NCOUNT) / UNICODE_HANGUL_TCOUNT)); // Just like other decompositions, the resulting Jamos must be dumped to the tmp string $dump = 1; } // Do we need to dump stuff to the tmp string? if ($dump) { $tmp .= substr($str, $tmp_pos, $starter_pos - $tmp_pos); // Dump combiners if (!empty($utf_sort)) { if ($sort) { ksort($utf_sort); } foreach ($utf_sort as $utf_chars) { $tmp .= implode('', $utf_chars); } } $tmp .= $utf_char; $dump = $sort = 0; $tmp_pos = $pos; } $last_cc = 0; $utf_sort = array(); $starter_pos = $pos; } } else { // ASCII char, which happens to be a starter (as any other ASCII char) if ($dump) { $tmp .= substr($str, $tmp_pos, $starter_pos - $tmp_pos); // Dump combiners if (!empty($utf_sort)) { if ($sort) { ksort($utf_sort); } foreach ($utf_sort as $utf_chars) { $tmp .= implode('', $utf_chars); } } $tmp .= $str[$pos]; $dump = $sort = 0; $tmp_pos = ++$pos; $pos += strspn($str, UTF8_ASCII_RANGE, $pos); } else { $pos += strspn($str, UTF8_ASCII_RANGE, ++$pos); } $last_cc = 0; $utf_sort = array(); $starter_pos = $pos; } } while ($pos < $len); // Now is time to return the string if ($dump) { $tmp .= substr($str, $tmp_pos, $starter_pos - $tmp_pos); // Dump combiners if (!empty($utf_sort)) { if ($sort) { ksort($utf_sort); } foreach ($utf_sort as $utf_chars) { $tmp .= implode('', $utf_chars); } } return $tmp; } else if ($tmp_pos) { // If the $tmp_pos cursor was moved then at least one character was not in normal form. Replace $str with the fixed version if ($tmp_pos == $len) { // The $tmp_pos cursor is at the end of $str, therefore $tmp holds the whole $str return $tmp; } else { // The rightmost chunk of $str has not been appended to $tmp yet return $tmp . substr($str, $tmp_pos); } } // The string was already in normal form return $str; } } ?>